- 积分
- 5672
- 在线时间
- 2880 小时
- 最后登录
- 2019-2-10
- 阅读权限
- 100
- 精华
- 2
  
- UID
- 26078
- 帖子
- 5585
- 精华
- 2
- 经验
- 5672 点
- 金钱
- 5633 ¥
- 注册时间
- 2007-8-18
|
Cascoding, Paralleling and Transforming
So what do you do if it's impractical to find the optimal load-line in a given circuit? Occasionally the sweet spot occurs at voltage values that are impractically low, or at currents that are higher than a device can handle for a given voltage. Here are three things that a designer can do to get into the zone.
The first is cascoding, where the gain device is coupled with a Common-Gate / Common-Grid / Common-Base (depending on the type of device!) tube or transistor which adds practically no influence of its own but which allows a more arbitrary DC and AC voltage across the gain device. Here are a couple of examples, using JFETs in both Common-Drain and Common-Source circuits.
The top JFET is the cascode device, and its Source voltage, which will be seen by the Drain of the JFET below it, is set by Vref. The idea is that the cascoding device provides a “voltage umbrella” for the gain JFET, and all manner of voltages can appear at the output of the circuit while the gain device sees all, a portion, or none of it.Another thing you can do to get into the zone of the sweet spot is to parallel devices. There are times when the load is too low (and you can't change it) or the voltage is too high, but often you can mitigate this situation by operating devices in parallel. This way you can limit the dissipation of each device, and the load appears as a multiple of the number of devices.A third thing you can do is to use a transformer, which can allow you a flexible range of voltages and currents through the device while delivering the appropriate values to the load. Tube amplifiers do it all the time, and it gives the extra flexibility that then allows you adjust for the sweet spot. 摘自The Sweet Spot
我们这里很多网友DIY的功放电压不超过50V,很多使用了并联功率管的做法,Pass这段话中关于并联功率管的话可以作为这做法的合理解释。 |
|